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The properties of classical models of distinguishable particles are shown to be
identical to those of a corresponding system of indistinguishable particles
without the need for ad hoc corrections. An alternative to the usual definition of
the entropy is proposed. The new definition in terms of the logarithm of the
probability distribution of the thermodynamic variables is shown to be consis-
tent with all desired properties of the entropy and the physical properties of
thermodynamic systems. The factor of 1/N! in the entropy connected with
Gibbs’ Paradox is shown to arise naturally for both distinguishable and indis-
tinguishable particles. These results have direct application to computer simula-
tions of classical systems, which always use distinguishable particles. Such
simulations should be compared directly to experiment (in the classical regime)
without ‘‘correcting’’ them to account for indistinguishability.
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1. INTRODUCTION

Computer simulation has become an essential tool in the calculation of
physical properties of many-particle systems. Although quantum mechani-
cal calculations can be performed for systems of limited size, most compu-
tational results come from simulations of classical systems. Since these
simulations, whether by molecular dynamics or Monte Carlo, inevitably
use systems of distinguishable particles, it is important to clearly under-
stand the statistical mechanics of such particles.
Real systems are ultimately governed by the laws of quantummechanics,

for which like particles (electrons, protons, atoms) are indistinguishable in



the very fundamental sense that the many-particle wave function describing
them is either perfectly symmetric or antisymmetric under exchange of two
particles. The question arises as to whether the distinction between distin-
guishable and indistinguishable particles affects the statistical description of
a system in the classical limit.
It is often stated in textbooks on statistical mechanics that the entro-

pies of systems of distinguishable and indistinguishable particles differ by a
term involving the logarithm of N!. (1) If this were true, it would require the
correction of results obtained from simulating a system of distinguishable
particles with a corresponding term. In fact, as I will show in this paper,
there is no such difference in the statistical mechanical and thermal prop-
erties in classical statistical mechanics between systems of distinguishable
and indistinguishable particles.
The analysis of this problem leads to a new definition of the entropy in

statistical mechanics that agrees with the thermodynamic definition, even in
cases in which the traditional definition fails.
The usual argument for the importance of indistinguishability is based

on the work of Boltzmann (2) and Gibbs, (3) which led to a conjecture about
the connection between Newtonian laws of motion for microscopic particles
and the macroscopic laws of thermodynamics, namely that the entropy was
proportional to the logarithm of a volume in phase space determined by
the constraints on the system of interest. Because of the leading role played
by Boltzmann, I will refer to this conjecture by his name for simplicity,
although essential contributions were also made by Gibbs.
While there were strong arguments in favor of Boltzmann’s conjec-

ture, a central problem was recognized very early. The best-known
demonstration that his expression for the entropy is incorrect is known as
Gibbs’ Paradox, (3) and is found in every textbook on statistical mecha-
nics. The paradox is usually expressed in terms of a contradiction in cal-
culating the entropy of mixing, but the essential point is that Boltzmann’s
expression for the entropy is not extensive, as is usually assumed in
thermodynamics. A solution was also rapidly found, which consisted of
including a factor of 1/N!, where N is the number of microscopic par-
ticles. This correction, known as ‘‘correct Boltzmann counting,’’ restored
the extensivity of the entropy. The most common justification for the ad
hoc inclusion of the extra factor of 1/N!, is that the correct laws of
nature are quantum mechanical, and in quantum mechanics particles are
indistinguishable. (1)

Because Boltzmann’s conjecture for the entropy—‘‘corrected’’ with the
extra factor of 1/N!—satisfies every criterion for the interpretation of real
experiments, this explanation has long been regarded as standard. However,
a consequence of ascribing the factor of 1/N! to the indistinguishability of
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particles is that the entropy of a system of truly distinguishable particles
would not have such a factor. As I will show in this paper, the properties of
a classical ideal gas do not depend on whether distinguishable or indistin-
guishable particles are used. Consequently, a proper definition of the
entropy should give the same answer in both cases. Specifically, factor of
1/N! should be present in both cases. This means that the results of com-
puter simulations with distinguishable particles should be compared
directly with the results of real experiments in the classical regime; no
correction factors are needed.
The only direct statements I have found in the literature that the factor

of 1/N! should be included for distinguishable particles occur in papers
by van Kampen (4) and Jaynes. (5) Their arguments are correct, but their
approaches to the fundamental problem are somewhat different than the
one I will present here.
The plan of this paper begins by recalling the thermodynamic defini-

tion of the entropy that preceded the formulation of statistical mechanics in
Section 2. This section is the basis for the entire discussion, since it recalls
the standard for what is meant by the term ‘‘entropy,’’ independent of any
particular view of the foundations of statistical mechanics. I then review
the traditional justification of the statistical mechanical formula for the
classical entropy and suggest an alternative interpretation of Gibbs’
paradox in Section 3. Next, I present my central proposal for a definition
of the entropy as the logarithm of a probability distribution in Section 4.
This definition is then applied to a classical ideal gas of distinguishable
particles in Section 5, with an alternative derivation of the volume depen-
dence being given in Section 6.
Section 7 demonstrates that Boltzmann’s conjecture for the entropy of

subsystems in a composite system of ideal gases leads to incorrect predic-
tions for the equilibrium of particles between the subsystems.
Section 8 introduces a highly artificial statistical model that is correctly

described by the Boltzmann expression for the entropy. This example is
intended to clarify the differences between my definition of the entropy and
Boltzmann’s. It also of interest because the Boltzmann definition of the
entropy is unable to deal with the differences between this artificial model
and the usual classical ideal gas of distinguishable particles. The artificial
example also highlights the distinction between additivity and extensivity,
which is further discussed in Section 9.
The case of classical indistinguishable particles is handled somewhat

differently than the usual textbook treatment when defining the entropy as
the logarithm of the probability distribution. This difference is discussed in
Section 10, where it is shown that the resulting entropy is identical to that
for distinguishable particles.
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For completeness, Section 11 contains a general expression for the
entropy of a classical system of interacting particles as the logarithm of a
probability distribution. A point of interest for application to computer
simulations is that the expression involves a surface rather than a volume in
phase space. Although the difference is negligible for a system of 1020 par-
ticles, it can be significant for computer simulations that necessarily use a
limited number of particles.
There is, of course, a difference between systems of distinguishable and

indistinguishable particles in quantum systems, and within the class of
indistinguishable particles, between fermions and bosons. However, these
differences concern the physical consequences of the symmetries of the
wave functions and do not affect the extensive nature of the entropy.
Because of the importance of the classical limit of quantum systems, I have
included a brief discussion of this point in Section 12, outlining how it is
treated when the entropy is defined by the logarithm of the probability
distribution.
Finally, I have given a summary in Section 13 that includes a list of

the key steps in my argument.

2. THE THERMODYNAMIC POSTULATES

Thermodynamics was already well developed before Boltzmann’s work
on deriving macroscopic properties from the postulate of the existence of
atoms, which was still controversial at the time. Although the meaning of
the entropy was not yet completely clear, the properties of the entropy had
been well established. Indeed, it was through a comparison of Boltzmann’s
formula for the entropy with those properties that Gibbs’ Paradox arose.
As a basis for the discussion in this paper, I will quote the relevant

postulates of thermodynamics in the form given by Callen. (6) The first pos-
tulate simply states the existence of equilibrium states. The fourth postulate
in Callen’s formulation is the Nernst Postulate, which is only relevant for
quantum systems. It is the second and third postulates that are important
for the current discussion.

Postulate II [Callen]. There exists a function (called the entropy S) of
the extensive parameters of any composite system, defined for all equilib-
rium states and having the following property. The values assumed by the
extensive parameters in the absence of an internal constraint are those that
maximize the entropy over the manifold of constrained equilibrium states.

Postulate III [Callen]. The entropy of a composite system is additive
over the constituent subsystems. The entropy is continuous and differen-
tiable and is a monotonically increasing function of the energy.
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To discuss the foundations of statistical mechanics from a systematic
point of view, it is convenient to slightly rearrange Callen’s postulates to
separate the various properties and present them (with one addition) in a
logical order. I would suggest the list:

1. The values assumed by the extensive parameters of a composite
system in the absence of an internal constraint are those that maximize the
entropy over the manifold of constrained equilibrium states.

2. The entropy of a composite system is additive over the constituent
subsystems.

3. The entropy is a monotonically increasing function of the energy.

4. The entropy is continuous and differentiable.

5. The entropy is extensive.

These postulates are not of equal importance. The first property
(Callen’s Postulate II) is essential, due to its central role in calculating
equilibrium properties and its association with the second law of thermo-
dynamics. Without this property, there seems little reason to use the word
‘‘entropy.’’ Because it leads directly to the second law of thermodynamics,
I regard it as the defining property of the entropy.
The second property (additivity) is necessary if we are to talk about

the entropy of a subsystem. If the entropy of a composite system cannot be
separated into additive entropies for its subsystems, the entropy of a simple
subsystem is not defined. This property is then almost as important in
applications as the first.
The third property is required for the temperature to be positive. It is,

of course, not strictly true for all systems, and it must often be understood
in terms of a limited range of energies of interest. Even the Ising model has
negative temperatures for high energy states.
The fourth properties are only valid in the limit of large systems, and

make computation much more convenient. They are not essential, and not
true for many finite systems of interest.
The fifth property that I have listed is the only one that is not con-

tained in Callen’s postulates. Callen restricted his analysis to homogeneous
systems, and then claimed to demonstrate that extensivity followed from
additivity. His argument includes an unstated assumption that the proper-
ties of a single large system are identical to those of a combination of two
smaller systems with the same total energy, volume, and number of par-
ticles. This assumption is equivalent to the property of extensivity that he
claimed to prove. It is valid for virtually all physical systems, but it is not
completely general, as shown in Section 8.
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Extensivity and the limitation to homogeneous systems are extremely
useful in the derivation of thermodynamic identities, but it must be
remembered that the full formalism of thermodynamics has no such
restrictions.
A simple example of the distinction between additivity and extensivity

can be seen by considering a gas in a container with walls on which the gas
can be adsorbed. The entropy of this system is not extensive because the
fraction of particles adsorbed on the walls is a function of the size of the
system. The deviation from extensivity can be quite large at low tempera-
tures, and is the basis for cryogenic vacuum pumps. Nevertheless, the
entropy of a composite system made up of two such systems is additive, the
maximum of the entropy gives the equilibrium values of the extensive
variables, and the second law of thermodynamics is satisfied.
Consequently, the fifth property is only valid for large systems that are

also homogeneous. It is necessary for the derivation of the Euler equation
and the Gibbs-Duhem equation, although it is not necessary for the second
law of thermodynamics. The study of homogeneous systems is has been
extremely fruitful in the development of thermodynamics. This paper will
also devote most of the discussion to homogeneous systems, but a full
theory of thermodynamics and statistical mechanics must be more general.
Since statistical mechanics is intended to provide a foundation for

thermodynamics, it is important for the properties of the entropy to be
derived, not individually postulated. We should not, for example, assume
that the entropy is extensive and impose that condition on an argument
from statistical mechanics. If the entropy is extensive, this must be demon-
strated from statistical mechanics.
From the considerations given in this section, it might be useful to

refer to a function as the entropy even if only the first property listed above
(Postulate II) is satisfied, since this is sufficient for the calculation of equi-
librium properties and the validity of the second law of thermodynamics.
In Section 4, I have taken this alone to be the basis of a statistical mechan-
ical definition of the entropy; all other properties must be demonstrated for
each specific case.
On the other hand, if we are to talk about the entropy of a subsystem

in a meaningful way, we need the second property (additivity) as well.
Another way of stating this is to say that the entropy of a composite system
should be separable into expressions for the entropies of the subsystems.
Since the entropy calculated from Boltzmann’s conjecture is claimed to
represent subsystems of ideal gases, it may reasonably be tested against
these two properties. We will introduce the Boltzmann entropy in the next
section, and demonstrate in Section 7 that it makes incorrect predictions if
it is assumed to satisfy the first two properties of the entropy.
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3. BOLTZMANN’S CONJECTURE AND GIBBS’ PARADOX

3.1. Standard Explanation

In this section, I will restrict my analysis to a classical ideal gas of dis-
tinguishable particles. The essence of the issue is contained in this simple
model, and the extension of the results to interacting systems is straight-
forward, although evaluating the resulting expressions remains a great
challenge. As usual, I will assume that the interactions between particles in
the ideal gas can be neglected in calculations, but had sufficed to bring the
system into equilibrium. I will use the usual notation of {pi, qi} for a point
in phase space. For a three-dimensional system of N particles, the index i
runs over 3N values for the x-, y-, and z-components of the momenta and
positions of the particles.
Boltzmann (and Gibbs) conjectured that the entropy of a system of

a large number N of particles (atoms or molecules) was given by the
logarithm of the accessible volume of phase space WB.

SB=kB ln WB (1)

The phase space volume WB was specified as including all energies less than
some maximum energy E, and all particle positions in real space within a
given volume V. (2, 3)

Following, for example, the derivation given in Pathria’s text, (1) this
assumption leads directly to an expression for the entropy of a classical
ideal gas of distinguishable particles of the form

SB=kBN 5ln(V)+1
3
2
2 ln 1E

N
2+XB6 (2)

where XB is a combination of universal constants that is independent of
E, V, and N. The derivation of this equation uses the first two terms of
Stirling’s approximation for large values of N.
Gibbs’ Paradox can be expressed in several ways, usually in the

context of a discussion of the entropy of mixing. However, it is essentially
the recognition that Eq. (2) is not extensive. If the system is doubled in size,
E, V, and N are all doubled, but SB becomes 2SB+kBN ln 2.
It is then claimed that we can ‘‘correct’’ Eq. (1)—if the particles are

indistinguishable—by dividing WB by N!,

S=kB ln(WB/N!) (3)
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so that we find a new expression for the entropy

S=kBN 5ln 1
V
N
2+13

2
2 ln 1E

N
2+X6 (4)

where X=XB+1.
The division by N! is never actually derived. It is usually justified by

saying that there are N! ways of arranging distinguishable particles, so
dividing by this factor gives the difference between the statistics of distin-
guishable and indistinguishable particles. As I will show, this argument is
not correct.

3.2. Alternative Interpretation of Gibbs’ Paradox

An alternative interpretation of the same equations is simply that the
original conjecture in Eq. (1) is wrong, and Gibbs’ Paradox is the demons-
tration that it is inconsistent with the expected properties of the thermo-
dynamic entropy.
The choice of explanations is not just a matter of taste; the alternatives

are testable. If the traditional explanation is correct, then Boltzmann’s
original equations for the entropy, Eqs. (1) and (2), would have to describe
the thermodynamic behavior of distinguishable particles. Since it is very
easy to perform numerical experiments with distinguishable particles—
every particle is distinguished by its own number in a computer simulation—
we can easily test whether Eq. (2) describes a classical gas of distinguishable
particles.
Actually, the situation is even simpler; a consideration of the conse-

quences of Eq. (2) shows that it cannot describe a classical gas of distinguish-
able particles. I will come back to this point in Section 7, after presenting an
alternative definition of the statistical mechanical entropy and exploring its
consequences in the intervening sections.

4. A DEFINITION OF THE ENTROPY AS THE LOGARITHM OF A

PROBABILITY DISTRIBUTION

The central thesis of this paper is that the entropy in statistical
mechanics should be defined as the logarithm of the probability distribu-
tion for the experimentally accessible observables in a composite system.
It is therefore based directly on the first property of the entropy in the list
given in Section 2 (Callen’s Postulate II).
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There are a number of advantages of this approach. First of all, the
validity of the second law of thermodynamics is immediately apparent. For
large (but not necessarily infinite) systems, the probability distribution of
observables is very narrow, with relative variations typically inversely pro-
portional to the square root of the number of particles. This both provides
support for Callen’s first postulate (the existence of a thermodynamic state)
and ensures that the mean and mode of the distribution are nearly the
same. Since the logarithm is a monotonic function of its argument, the
maximum of the entropy necessarily corresponds to the equilibrium condi-
tion obtained when internal constraints are released.
Another advantage of the proposed definition is that it clarifies the

dependence of the entropy on experimental conditions, since the entropy
is a function of the accessible observables. The variety of situations that
Jaynes illustrated with his discussion of the imagined properties of ‘‘Whif-
nium’’ and ‘‘Whoofnium’’ (5) are automatically handled correctly.
The derivation of an equation for the entropy begins with the usual

assumptions about the equilibrium probability distribution for the posi-
tions and momenta of distinguishable particles in a classical ideal gas.
I then follow standard methods to derive expressions for the equilibrium
values of the energies, volumes, and numbers of particles in the subsys-
tems. In the course of this derivation, a function naturally arises that has
the properties listed in Section 2. Since the postulates of thermodynamics
only claim that a function called the entropy exists and has certain
properties, identifying such a function is sufficient to establish it as the
entropy. Another way of putting it is to say that the statistical mechani-
cal solution gives us a function with the thermodynamic properties of
the entropy, which the thermodynamic postulates had anticipated and
named.
Defining the entropy in terms of probability distributions also pro-

vides a clear basis for the discussion of the statistical mechanics of distin-
guishable particles that is not possible when the entropy is defined in terms
of a volume in phase space. Since, as I will show, the properties of a classi-
cal gas of distinguishable particles are identical to those of a system of
indistinguishable particles, their entropies should also be the same. With
the definition I am proposing, they are the same, although the use of
the Boltzmann conjecture has led to the wide-spread belief that they are
different.
A very important aspect of the proposed definition of the entropy is

that it only assumes the validity of the first property listed in Section 2
(Postulate II). Whether the entropy of a given system has the other
properties (additivity, monotonicity, continuity and differentiability, and
extensivity) is not assumed and must be demonstrated explicitly.
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5. THE ENTROPY OF THE CLASSICAL IDEAL GAS WITH

DISTINGUISHABLE PARTICLES

This section discusses the calculation of the entropy for a classical
ideal gas with distinguishable particles. The modifications necessary to deal
with indistinguishable particles will be discussed in Section 10. The final
answer will be seen to be the same in both cases.
It is convenient to reinterpret the concept of an ‘‘ensemble’’ to reflect

the concepts of probability theory. It is usual in statistical mechanics to
define an ensemble in terms of ‘‘a large number’’ of microstates that would
be consistent with a given macrostate (that is, with specified values of E, V,
and N). However, there is no consistent way of limiting the possible states
to a finite, or even countable number. It is much more appropriate to
characterize an ensemble in classical statistical mechanics by a continuous
probability distribution in phase space, P({pi, qi}). From the definition of
the entropy that I have presented, the central problem of statistical
mechanics is to first specify the probability distribution and then to trans-
form from the set of microscopic variables, {pi, qi}, to the macroscopic
observables, E, V, and N (or whatever other variables are appropriate for
the experiment under consideration). The entropy is given by the logarithm
of that distribution.
For the classical ideal gas, the positions and momenta are assumed to

be independent random variables, which allows us to analyze them sepa-
rately. First consider the positions of the particles.
If the particles are confined to a volume, V, then assume that the

probability density for each particle is a constant equal to 1/V, indepen-
dent of the probability density for every other particle. From these
assumptions, the probability distribution for the number of distinguishable
particles in the two subvolumes V1 and V2 is simply given by the binomial
distribution

W(N1, N2)=
N!

N1 ! N2 !
1V1
V
2N1 1V2

V
2N2 (5)

with the added constraint that N1+N2=N, the fixed total number of par-
ticles. As is well known, the expectation value of N1 is given by

ON1P=N 1
V1
V
2 (6)

and the width of the probability distribution is given by

d2N1=N 1
V1
V
2 1V2
V
2 (7)
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This is obviously the correct answer for the probability distribution of dis-
tinguishable particles.
The logarithm of the probability distribution given in Eq. (5) can be

written in the interesting form

lnW(N1, N2)=ln Wq(V1, N1)+ln Wq(V2, N2)− ln Wq(V, N) (8)

where

Wq(V, N)=
VN

N!
(9)

and the subscript q refers to the configurational degrees of freedom. The
factor of N! in the denominator of Eq. (9) comes from the binomial coef-
ficient and is the missing term in Boltzmann’s conjecture.
Since the last term in Eq. (8) only depends on the total volume and

total number of particles, which are not functions of N1 or V1, it only plays
the role of a normalization constant and is not needed to find the
maximum of lnW(N1, N−N1) that determines the equilibrium value of N.
This suggests that we identify a ‘‘configurational entropy’’ as

Sq=kB ln Wq(V, N) (10)

The sum of the configurational entropies for the two subsystems is
then a maximum at the correct equilibrium values given by

N1
V1
=
N2
V2

(11)

which is equivalent to Eq. (6). This contrasts with the Boltzmann entropy,
which leads to an incorrect prediction for the equilibrium value of the
number of particles, as will be shown in Section 7.
I have already assumed that the positions of each particle are inde-

pendent random variables with a probability density equal to 1/V within
the volume to which they are confined. The corresponding assumption for
the momenta is that they have a uniform probability density in momentum
space {pi}, subject to the constraint on the total energy.
The usual constraint imposed on the momenta is that the total energy

must be equal to or less than some value E. There seems to be no particular
reason for not specifying that the total energy is simply equal to some value,
except the desire that the entropy be related to a ‘‘volume’’ in phase space.
Naturally, if the energy is fixed, the corresponding integral is restricted to a
hypersurface, and gives a vanishing hypervolume.
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Most textbooks contain an argument for allowing all values of the
energy less than E, based on the non-vanishing experimental errors in the
measurement of the energy. However, these arguments rely on the total
number of particles being extremely large—of the order of Avogadro’s
number. They become less plausible when an attempt is made to apply
them to systems of less than a million particles, especially in light of the
substantial effort involved to ensure that the total energy is constant in
molecular dynamics simulations.
Since it is not necessary to assume that the energy is equal to or less

than some value, I will assume that the total energy is specified exactly. It
will be obvious that any other assumption about the energy can be easily
incorporated into the formalism if the experimental situation requires it.
Using the Dirac delta function to describe the constraint imposed on

the probability distribution in momentum space, we can write the proba-
bility distribution for the energies E1 and E2 of our two subsystems as

W(E1, E2)=
> dpFN d(E1−; i, 1 pF

2
i, 1/2m) d(E1−; i, 2 pF

2
i, 2/2m)

> dpFN d(E−; i pF
2
i /2m)

(12)

Naturally, this expression is subject to the constraint that the total energy is
conserved, E=E1+E2.
If we take the logarithm of the probability distribution, we see that it

again breaks up into three contributions: one from each subsystem, and
one from the normalization of the total system. Again, the maximum of the
sum of the terms from each subsystem coincides with the maximum of the
probability distribution of the energies, and consequently corresponds to
the equilibrium values.
To sum up the results obtained so far, treating both the coordinates

and the momentum together leads to a function

W(E, V, N)=
1
h3N
1
N!

F dqFN F dpFN d 1E−C
i
pF 2i /2m2 (13)

and the entropy of a subsystem is identified as

S=kB ln(W) (14)

For convenience in making a connection to the classical limit of quantum
statistics, which is beyond the scope of this section, I have included a factor
of 1/hdN in the definition of the entropy of a d-dimensional system.
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The integrals over the coordinates in Eq. (13) give a factor of VN as
before. The integral over the surface of the constant-energy hypersphere in
momentum space is also easily performed to give

W(E, V, N)=
1
h3N
1
N!
VN

p3N/2−1

(3N/2−1)!
m(2mE)3N/2−1 (15)

for the classical ideal gas with distinguishable particles. Note that this
expression is not identical to the usual one, primarily because of the
appearance of 3N/2−1 instead of 3N/2. When N is of the order of
Avogadro’s number, this difference is completely insignificant, and the use
of 3N/2 is appropriate. For smaller systems, such as might be considered
in a computer simulation with a fixed total energy, Eq. (15) is correct. The
final result of the present derivation for a large system is

S=kBN 5ln 1
V
N
2+13

2
2 ln 1E

N
2+13

2
2 ln 14pm

3h2
2+5
2
6 (16)

which is equivalent to the well-known Sackur–Tetrode equation.
Note that the factor of 1/N! in Eqs. (9), (13), and (15) comes from

the binomial distribution given in Eq. (5). It results from considering the
combinatorics of the probability distribution of distinguishable particles
between two boxes.

6. THE EQUILIBRATION OF THE VOLUMES OF TWO SUBSYSTEMS

IN A CYLINDER

Although the derivation of the entropy of an ideal gas of distinguish-
able particles has already established that it is a maximum for the equilib-
rium values of the energy and the number of particles in each subsystem, it
still remains to demonstrate that it also correctly predicts the equilibrium
values of the volumes of two subsystems in a cylinder, separated by a
piston. It is easy to show from Eq. (16) that this is the case, but it is also
interesting to see how this arises directly from the same assumptions
concerning the probability distribution that led to Eq. (16).
Since the positions and momenta are assumed to be independent

random variables, it suffices to consider the probability distribution of the
positions. I have assumed that the probability distribution is a constant
subject to the constraints. In this case, the constraints are that the total
volume is fixed,

V=V1+V2 (17)

Statistical Mechanics of Classical Systems with Distinguishable Particles 1155



and there are N1 and N2 particles in the two subsystems. The probability
density for the positions of the particles is then

P({rFi})=X(N1, N2, V) (18)

where X gives the normalization. Integrating over the positions of the par-
ticles within each volume, we obtain the probability distribution for the
volumes.

P(V1, V2)=V
N1
1 V

N2
2 X(N1, N2, V) (19)

The maximum value of this probability distribution leads directly to
the condition given in Eq. (11) that the particle densities in the two subsys-
tems must be the same in equilibrium. The volume dependence again has
the form VN that occurs in Eqs. (5) and (15), confirming that the expres-
sion for the entropy in Eq. (4) or Eq. (16) is consistent with the derivation
and correctly describes a classical ideal gas of distinguishable particles.

7. THE PREDICTIONS OF BOLTZMANN’S ENTROPY FOR

DISTINGUISHABLE PARTICLES

Virtually all textbooks claim that Boltzmann’s expression for the
entropy, given in Eq. (2), gives the entropy for an ideal gas. Therefore, if
we consider a simple composite system made up of two such subsystems,
Boltzmann’s expression makes certain predictions about the behavior of an
ideal gas of distinguishable particles that are easy to test. Callen’s postula-
tes, or the first two essential properties of the entropy listed in Section 2,
require that the maximum of the sum of the entropies of two parts of a
composite system determines the equilibrium values of E, V, or N when a
constraint is released. For E and V, the predictions are correct. However,
for N they are not.
Consider two isolated subsystems in equilibrium with values of E1, V1,

and N1 and E2, V2, and N2, respectively. The total Boltzmann entropy from
Eq. (2) is then

SB=kBN1 5ln(V1)+1
3
2
2 ln 1E1

N1
2+XB6

+kBN2 5ln(V2)+1
3
2
2 ln 1E2

N2
2+XB6 (20)
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Bringing the two subsystems into thermal contact and imposing the con-
straint that the total energy is fixed

E=E1+E2 (21)

we can set the derivative of the total entropy equal to zero

“SB
“E1
=kBN1 1

3
2
2;E1−kBN2 1

3
2
2;E2=0 (22)

and find the equilibrium condition

E1
N1
=
E2
N2

(23)

as expected. This is, of course, a standard derivation found in all textbooks.
Now, after the composite system has come to thermal equilibrium,

poke a hole in the wall between the two subsystems. The energy equilib-
rium described by Eq. (23) remains unchanged. The equilibrium values for
the numbers of particles in each subsystem are determined by taking the
derivative of the entropy with respect to particle number. The derivative of
the Boltzmann entropy in Eq. (20) is

“SB
“N1
=kB 5ln(V1)+1

3
2
2 ln 1E1

N1
2+XB6−kB 5ln(V2)+1

3
2
2 ln 1E2

N2
2+XB6

(24)

or, using the condition for energy equilibrium, Eq. (23),

“SB
“N1
=kB ln 1

V1
V2
2 (25)

However, this expression for the derivative of the entropy is not a
function of N1 or N2. Unless V1=V2, this derivative does not vanish. A plot
of SB as a function of N1 is a straight line with the maximum lying at
N1=N if V1 > V2, and at N1=0 if V1 < V2. Therefore, Boltzmann’s conjec-
ture leads directly to the bizarre prediction that all particles in an ideal gas
of distinguishable particles should go to the larger of the two subvolumes!
Since the specification of the two subvolumes does not have to involve

a real barrier, it suffices to draw an imaginary barrier and ask the question
of how many particles are on each side. Clearly, we cannot make the
particles rush from one side of the box to the other by asking a different
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question without otherwise changing the experiment. Therefore, Boltzmann’s
expression for the entropy is incorrect. It does not describe the macroscopic
behavior of a classical ideal gas of distinguishable particles. On the other hand,
I will show in the next section that an artificial model can be constructed for
which Boltzmann’s expression does provide a correct description.

8. AN ARTIFICIAL SYSTEM THAT IS CORRECTLY DESCRIBED

BY THE BOLTZMANN ENTROPY

We can construct a model system for which the Boltzmann entropy
given in Eq. (2) is valid. The model is highly artificial, which has the
advantage of emphasizing the unusual features necessary to violate exten-
sivity in a homogeneous subsystem. By deriving the entropy for this system
from a probabilistic point of view, we can see that the Boltzmann expres-
sion correctly describes its (unusual) properties. The entropy of this model
is additive, but not extensive.
Consider a collection of boxes, each of which contains a gas of distin-

guishable particles. Each particle carries an integer label, and no two par-
ticles carry the same label, whether or not they are in the same box. Each
box also carries an integer label, so that the boxes as well as the particles
are ordered. To be specific, consider boxes 1 and 2, with volumes V1 and V2,
and define V=V1+V2.
Within each box, the properties of the particles are identical to those

normally assumed for a classical ideal gas. However, when two boxes are
brought together and particles are allowed to pass from one box to
another, special rules apply. Instead of any particle from box 1 being
allowed to go into box 2, only the particle with the highest integer label
may be transferred. Similarly, only the particle in box 2 with the lowest
integer label may be transferred into box 1.
Assume for simplicity that transfers occur at discrete time steps. At any

time step, the probability of the particle with the highest integer label in box
1 being transferred into box 2 is V2/V. Similarly, the probability of the par-
ticle with the lowest integer label in box 2 being transferred into box 1 is
V1/V. If all particles were allowed to be transferred at each time step, these
probabilities would produce the usual properties of the classical ideal gas.
However, with the restrictions imposed, the properties are quite different.
It is also possible to construct a variation of this model with weak

interactions to equilibrate the system during a molecular dynamics simula-
tion, with a hole connecting the two boxes that only allows the appropriate
particles to pass through. Despite the artificiality of these models, which
are not intended to represent real systems, they are quite easy to simulate
with a computer.
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From the condition of detailed balance, is easy to show that the
probability of having N1 particles in box 1 is proportional to V

N1
1 V

N2
2 .

There are no factors of N1 ! or N2 !. Taking the logarithm of this expression
and multiplying by Boltzmann’s constant, we find terms in the entropy of
the form

kBN1 ln(V1)+kBN2 ln(V2) (26)

which are exactly what is obtained by adding the expressions for the
Boltzmann entropy for each box. Maximizing the entropy for the proba-
bility under the condition of the conservation of the total number of par-
ticles, we again find the strange result that the particles go to the larger of
the two boxes. However, this is the correct answer for our artificial model.
Although the entropy of the combined system in our highly artificial

model is given by the sum of the entropies of the subsystems, it is not equal
to the entropy of a simple system with volume V=V1+V2. The properties
of a composite system with subvolumes V1 and V2 are not the same as those
of a simple box with volume V=V1+V2. Therefore, the entropy of this
model, which is identical to the usual expression for the Boltzmann entropy
in Eq. (2), is not extensive. However, it is additive and gives correct predic-
tions for all properties of the artificial model.

9. ADDITIVITY AND EXTENSIVITY

The properties of additivity and extensivity are distinct. In the defini-
tion of the entropy based on the logarithm of the probability distribution,
neither additivity nor extensivity is assumed. Each property must be dem-
onstrated separately for each model under consideration.
Additivity (or separability) can be demonstrated by showing that the

terms in the entropy of a composite system can be separated into additive
contributions from each subsystem. This is true for most physical systems
of interest under the assumption that we can neglect direct interactions
between particles in different subsystems. It can still be true when a system
is not extensive because the surface terms are too large to neglect. It is also
true for our artificial model. It is not true for systems with long-range
interactions that provide direct interactions between particles in different
subsystems.
Extensivity can be demonstrated by showing that the terms in the

entropy of a composite system that correspond to a particular subsystem
are multiplied by a given factor when each of the extensive variables of the
subsystem is multiplied by the same factor. This is only approximately true,
even for homogeneous systems, due to surface effects. Deviations from
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extensivity are often small for macroscopic systems. They are not always
negligible for the relatively small systems used in computer simulations,
although the use of periodic boundary conditions greatly reduces their
importance if the system is not too close to a phase transition. The artificial
model in Section 8 does not have an extensive entropy, nor do systems with
long-range interactions.
Consequently, extensivity requires additivity, but additivity does not

imply extensivity.

10. THE ENTROPY OF A CLASSICAL IDEAL GAS WITH

INDISTINGUISHABLE PARTICLES

Now that we have established that the entropy of the classical ideal
gas with distinguishable particles is extensive and does not suffer from
Gibbs’ Paradox, a question arises concerning the properties of a gas of
indistinguishable particles. According to the traditional explanation of
Gibbs’ Paradox, there should be a difference between the two cases that is
reflected in an extra factor of 1/N! for indistinguishable particles. Since a
factor of 1/N! is already present in the case of distinguishable particles,
are there two such factors for indistinguishable particles? The answer is no;
the entropy is the same for a classical gas with distinguishable or indistin-
guishable particles.
To analyze the situation, we again consider two subsystems with

volumes V1 and V2 that can transfer particles between them and are in
equilibrium.
Recall that the definition of indistinguishable particles is that the

exchange of any two particles leaves the microscopic state unchanged.
Therefore, for indistinguishable particles, we cannot write down the bino-
mial distribution because it was derived under the assumption that the
particles were distinguishable and the exchange of particles gave a different
microscopic state. However, we can retain the assumptions that the posi-
tions and momenta are independent, and the assumption that the proba-
bility distribution for the positions is a constant.
To describe the positions of indistinguishable particles, we must use a

numbering system that does not distinguish between them. One way to do
that is to order the particles purely on the basis of their instantaneous
positions. Given a list of the x-coordinates of the particles in each subsys-
tem, order them from the smallest value of x to the largest, and number
them accordingly. This is consistent with the condition of indistinguisha-
bility, because the particle with the smaller x-coordinate always has a lower
index, even when the particles move or are exchanged.
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I will assume for simplicity that the x-coordinate varies between 0 and
L1 in the first subsystem, with a corresponding expression in the second
subsystem. The cross-sectional areas are assumed to be A1 and A2. The
probability distribution is again a constant

P({rFi})=X(V) (27)

where X(N) does not depend on N1 or N2. The probability distribution for
the numbers of particles in each subsystem is then given by the integrals

P(N1, N2)=X(N) A
N1
1 A

N2
2 F

L1

0
dxN1 F

xN1

0
dxN1 −1 · · ·F

x1

0
dx1

×F
L2

0
dx −N2 F

x −N2

0
dx −N2 −1 · · ·F

x −1

0
dx −1 (28)

where I have used primes to indicate the x-coordinates of the second sub-
system. The integrals are easily performed iteratively, giving

P(N1, N2)=X(N) 1
VN11
N1 !
2 1VN22
N2 !
2 (29)

which has the same dependence on the volumes and the numbers of par-
ticles as the binomial distribution for distinguishable particles in Eq. (5).
Combining this answer with the energy distribution, which is unchanged,
we arrive at exactly the same expression for the entropy that we had
derived for distinguishable particles.
Indistinguishability has no effect on the macroscopic properties of a

classical ideal gas.

11. THE ENTROPY OF CLASSICAL SYSTEMS WITH INTERACTING

PARTICLES (EITHER DISTINGUISHABLE OR

INDISTINGUISHABLE)

Since we obtain the same answer for distinguishable and indistin-
guishable particles, our method of calculation for more complicated
systems should be based primarily on convenience. Because

1
N!

F
L

0
dxN F

L

0
dxN−1 · · ·F

L

0
dx1=F

L

0
dxN F

xN

0
dxN−1 · · ·F

x1

0
dx1 (30)

it is clearly simpler to use the form on the left in all calculations.
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The generalization of Eq. (13) to include interactions between particles
is then straightforward for both distinguishable and indistinguishable
particles.

W(E, V, N)=
1
h3N
1
N!

F dqFN F dpFN d(E−H({pi, qi})) (31)

where the Hamiltonian contains contributions from both the potential and
kinetic energies. The entropy is then obtained from the logarithm of this
expression, as in Eq. (14).
The expression in Eq. (31) differs from the usual expression in that it is

related to a hypersurface rather than a hypervolume in phase space.
However, it gives the same formula for the entropy in the limit of a very
large number of particles, while also being correct for the smaller systems
used in computer simulations. It also has significant advantages in
simplifying the derivation of the canonical ensemble and unifying the
presentation of statistical mechanics to students.
Extending Eq. (31) to include more than one type of particle or addi-

tional observables is straightforward. This approach is also consistent with
Jaynes’ discussion of different expressions for the entropy based on the
supposed discovery of ‘‘Whifnium’’ and ‘‘Whoofnium;’’ (5) his different
cases simply correspond to reducing the probability distribution in phase
space to probability distributions for different experimentally accessible
variables. Different experimental conditions produce different expressions
for the entropy.

12. QUANTUM IDEAL GASES OF DISTINGUISHABLE OR

INDISTINGUISHABLE PARTICLES

Although the main topic of this paper concerns classical systems, the
importance of the relationship with quantum mechanical systems requires a
few additional comments.
First of all, to describe a quantum system from a probabilistic point of

view, we must first chose a probability density for the set of all wave func-
tions—not just for the set of eigenfunctions. The next step is to assume that
the phases of the coefficients of an expansion of an arbitrary wave function
in terms of eigenfunctions are all independent and uniformly distributed.
Averaging over the phases then produces the usual expressions in terms of
sums over energy eigenfunctions.
Because the use of the binomial distribution rests on the assumption

that the particles are distinguishable, there is no justification for including a
factor of 1/N! for quantum systems of identical particles in the derivation
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of the thermodynamic properties. As is the case for a classical system of
indistinguishable particles, the calculation of the entropy of a quantum
system of identical particles automatically gives an expression for the
entropy that is extensive, with a classical limit agreeing with Eq. (34).
To illustrate the point, the grand canonical partition function is

written without any factors of 1/N! as

ZGC= C
.

N=0
C
N

{ne}
D
e

exp[−b(e−m) ne]=C
.

{ne}
D
e

exp[−b(e−m) ne] (32)

where E refers to an individual particle state and nE is the number of par-
ticles in a given state. The sum over{ne} in the middle expression goes over
all sets of values allowed by the symmetry of the wavefunction such that
; e ne=N. The first two sums can be combined to go over all sets of values
of {ne}, as shown in the last expression. The sum and product are then
interchanged to give

ZGC=D
e

C
ne

exp[−b(e−m) ne] (33)

where the sum is now only over nE for a single state e.
For fermions and bosons, the sum can be carried out in the usual

manner to give

ZGC=˛De (1+exp[−b(e−m)]) for fermions

D
e

(1− exp[−b(e−m)])−1 for bosons
(34)

which, in turn, lead to the usual Fermi and Bose functions for the occupa-
tion of the individual particle eigenstates.

OneP=˛
[exp(b(e−m))+1]−1 for fermions
[exp(b(e−m))−1]−1 for bosons

(35)

For the case of a quantum system of distinguishable particles, the
argument based on the binomial distribution of particles between two
subsystems again requires the inclusion of a factor of 1/N!. However, the
number of states with a given distribution of energy among the single
particle states is

N!
<e ne !

(36)
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so that the grand canonical partition function for non-interacting particles
becomes

ZGC= C
.

N=0

1
N!

C
N

{ne}

1 N!
<e ne!
2D
e

exp[−b(e−m) ne] (37)

The factors of N! cancel, the sum and product are interchanged as before,
and the sum can be carried out exactly to yield

ZGC=D
e

C
.

ne=0

1
ne!
exp[−b(e−m) ne]=D

e

exp(exp[−b(e−m)]) (38)

The occupation number for an individual particle eigenstate becomes
simply

OneP=exp[−b(e−m)] (39)

In all three cases, the resulting thermal properties behave properly. The
grand canonical thermodynamic potential is obviously extensive from
Eqs. (38) and (39), just as are the corresponding thermodynamic potentials
for Fermi and Bose cases in Eqs. (34) and (35). The entropy is extensive for
both distinguishable and indistinguishable quantum particles, although
their other properties are quite different.

13. SUMMARY

Despite the importance of Boltzmann’s conjecture in the history of
statistical mechanics, it contains a fundamental flaw. Recognition of this
error is not merely a matter of philosophical taste, but has practical con-
sequences in the interpretation of computer simulations and in their com-
parison with real experiments.
Because Boltzmann’s conjecture has always been applied to the analy-

sis of experimental data in the ‘‘corrected’’ form, with an additional factor
of 1/N! generally attributed to quantum mechanics, the consequences of
the error have not been obvious. The equations in general use provide a
correct description of real experiments. This is one of the few examples of
two wrongs making a right.
However, when applied to computer simulations, the standard argu-

ment would call for an extra factor of 1/N!. Any such ‘‘correction’’ would
be an error. The usual equations for the statistical mechanics of a classical
system—or, preferably, Eq. (31) above—are correct as they stand for
interpreting the results of computer experiments.
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In this paper, I have presented an alternative definition of the entropy
that unifies the basis of statistical mechanics and provides a basis for a
clearer microscopic understanding of the postulates of thermodynamics.
The key steps in the argument for classical systems are:

1. Analyze the properties of a composite system instead of the usual
procedure of beginning with an assumption about the properties of an
isolated homogeneous system.

2. Introduce assumptions about the probability distribution of states
in phase space. Specifically, I have chosen to assume a uniform distribution
consistent with the constraints imposed on the system. Other choices are
possible; the test is, as usual, whether the predictions agree with experiment.

3. Transform the probability distribution in phase space to a proba-
bility distribution for the variables describing the composite system (i.e.,
the energies, volumes, numbers of particles, etc. in each subsystem).

4. Define the entropy as the logarithm of the probability distribution
for the variables describing the composite system. (Multiplication by
Boltzmann’s constant ensures consistency of units.)

5. Other properties of the entropy, such as additivity, extensivity, etc.
for subsystems, must be established by analysis of the expression obtained
for the entropy of the composite system, not imposed through additional
assumptions.

The extension of this procedure to quantum mechanics simply involves
assumptions about the probability distribution of quantum states. In par-
ticular, the assumption that all phases are independent and equally likely
leads to the usual expressions for thermodynamic properties in terms of
sums over energy eigenstates.
By defining the entropy as the logarithm of the probability distribu-

tion for the variables being considered in an experiment, which is very
much in the spirit of what Boltzmann and Gibbs intended, although differ-
ing from the equations they wrote, distinguishable and indistinguishable
particles for both classical and quantum statistical mechanics can be
treated consistently and correctly.
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